Math 3280
 Review Problems for Exam I

This is not an exhaustive list of all possible types of problems. See the class notes, the textbook and homework for additional problems.

1. Solve the IVP $x^{\prime}+2 x=t e^{-2 t}, x(1)=0$.
2. Find the explicit solution of the IVP $\frac{d x}{d t}=\frac{3 t^{2}+4 t+2}{2(x-1)}, x(0)=2$.
3. Find the implicit solution of $\frac{d x}{d t}=\frac{x \cos t+2 t e^{x}}{1-\sin t-t^{2} e^{x}}$.
4. Find the explicit solution $x=x(t)$ of $\left(t^{2}+3 t x+x^{2}\right) d t-t^{2} d x=0$. Assume $t>0$.
5. Consider $x^{\prime}(t)=x-\sqrt[3]{4 x}$. Find its equilibrium solutions. Classify the equilibrium solutions and draw its phase line.
6. Consider $x^{\prime}(t)=x^{2}\left(1-x^{2}\right)$. Find its critical points and classify them using the linearization theorem. Draw its phase line.
7. Consider $x^{\prime}(t)=x^{4}-2 x^{3}+x^{2}$. Find its equilibrium points and classify them. Determine the intervals, (initial) x-values, on which the solution $x(t)$ would be increasing or decreasing. Determine the intervals, x-values, on which the solution $x(t)$ would be concave up or down. Use these information to graph several representative flows (solutions) in the $t x$-plane.
8. Solve the IVP $6 x^{\prime \prime}(t)=5 x^{\prime}(t)-x(t), x(0)=4, x^{\prime}(0)=0$ by first converting it to a first order planar system.
9. Consider the nonlinear system

$$
\begin{aligned}
& \frac{d x}{d t}=x y+1 \\
& \frac{d y}{d t}=x^{2}+2
\end{aligned}
$$

Find all places in the $x y$-plane that its solution trajectories have (a) Horizontal tangent lines, (b) Vertical tangent lines, or (c) Tangent lines with slope $m=2$, in any.
10. Solve

$$
\begin{array}{ll}
\frac{d x}{d t}=-x y+e^{t^{2}} & (x(1), y(1))=\left(\frac{e}{2}, 1\right) \\
\underline{d y}=-\underline{y} &
\end{array}
$$

Assume $t>0$.

(Partial) Answers to the Review Problems for Exam I Continued

17. $\lambda=\lambda_{1}=\lambda_{2}=-1, V_{1}=\binom{1}{0}, V_{2}=\binom{0}{1} ; X(t)=c e^{-t} V$ for any vector V. All solutions are on lines through origin. The critical point $(0,0)$ is a sink.
18. $\lambda=i, V=\binom{3-i}{5} ; X(t)=c_{1}\binom{3 \cos t+\sin t}{5 \cos t}+c_{2}\binom{3 \sin t-\cos t}{5 \sin t}$. The critical point $(0,0)$ is a center. Solution curves have clockwise rotation.
19. $\lambda=1+2 i, V=\binom{-i}{1} ; X(t)=c_{1}\binom{e^{t} \sin 2 t}{e^{t} \cos 2 t}+c_{2}\binom{-e^{t} \cos 2 t}{e^{t} \sin 2 t}$. The critical point $(0,0)$ is a spiral source. Solution curves have clockwise rotation.
20. $\lambda_{1}=-2, V_{1}=\binom{1}{1} ; \lambda_{2}=-1, V_{2}=\binom{1}{2} ; X(t)=c_{1} e^{-2 t}\binom{1}{1}+c_{2} e^{-t}\binom{1}{2}$. The lines $y=x$ and $y=2 x$ are the straight-line solutions (stable manifolds); The critical point $(0,0)$ is a sink.
21. Consider the nonlinear system

$$
\begin{aligned}
& \frac{d x}{d t}=3 y^{2}\left(x^{2}+1\right) \\
& \frac{d y}{d t}=2 x
\end{aligned}
$$

Solve it to find y as a function of x by considering $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$.
12. Find the solution of $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)\binom{x}{y}$ with initial values $x(0)=2$ and $y(0)=1$

In the following problems, consider the system $X^{\prime}(t)=A X$, with the given matrix A , and do the following.
(a) Find its general solution.
(b) Find its critical point(s) and classify them, if possible.
(c) Discuss information useful for drawing its representative trajectories, for example,

- Straight line (invariant) solutions.
- Slopes of tangent lines to the solution curves.
- Direction field or the direction of the increasing t value of the solution curves.
- Converting the solution to rectangular coordinates.
(d) Draw several representative trajectories.

Note: For these review problems, you may use Mathematica to find the eigenvalues and the corresponding eigenvectors.
13. $A=\left(\begin{array}{cc}1 & -1 \\ -2 & 0\end{array}\right)$
14. $A=\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)$
15. $A=\left(\begin{array}{cc}-3 & -1 \\ 4 & -1\end{array}\right)$
16. $A=\left(\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right)$
17. $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
18. $A=\left(\begin{array}{ll}-3 & 2 \\ -5 & 3\end{array}\right)$
19. $A=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$
20. $A=\left(\begin{array}{ll}-3 & 1 \\ -2 & 0\end{array}\right)$
(Partial) Answers to the Review Problems for Exam I

1. $x(t)=\frac{1}{2}\left(t^{2}-1\right) e^{-2 t}$
2. $x(t)=1+\sqrt{t^{3}+2 t^{2}+2 t+1}$
3. $x-x \sin t-t^{2} e^{x}=c$
4. $x(t)=\frac{(1-c) t-t \ln t}{c+\ln t}$
5. $x=-2$, unstable; $x=0$, stable; $x=2$, unstable
6. $x=-1$, unstable; $x=0$, semistable; $x=1$, stable
7. $x=0$ and $x=1$, both semistable; x is increasing for $x<0,0<x<1$, and $x>1$; x is concave downward for $x<0$ and $\frac{1}{2}<x<1 ; x$ is concave upward for $0<x<\frac{1}{2}$ and $x>1$
8. $x=12 e^{\frac{1}{3} t}-8 e^{\frac{1}{2} t}$
9. No horizontal tangent lines; Vertical tangent lines on the curve $y=-\frac{1}{x}$; Tangent lines with slope $m=2$ on the lines $x=0$ and $y=\frac{x}{2}$
10. $x(t)=\frac{e^{t^{2}}}{2 t}, y(t)=\frac{1}{t} \quad$ 11. $y=-\sqrt[3]{c+\ln \left(x^{2}+1\right)} \quad$ 12. $x(t)=(t+2) e^{2 t}, y(t)=e^{2 t}$
11. $\lambda_{1}=-1, V_{1}=\binom{1}{2} ; \lambda_{2}=2, V_{2}=\binom{-1}{1} ; X(t)=c_{1} e^{-t}\binom{1}{2}+c_{2} e^{2 t}\binom{-1}{1}$. The lines $y=2 x$ and $y=-x$ are the straight-line solutions (stable and unstable manifolds); The critical point $(0,0)$ is a saddle point.
12. $\lambda_{1}=1, V_{1}=\binom{1}{2} ; \lambda_{2}=2, V_{2}=\binom{1}{1} ; X(t)=c_{1} e^{t}\binom{1}{2}+c_{2} e^{2 t}\binom{1}{1}$. The lines $y=2 x$ and $y=x$ are the straight-line solutions (unstable manifolds); The critical point $(0,0)$ is a source.
13. $\lambda=\lambda_{1}=\lambda_{2}=1, V=\binom{1}{2} ; X(t)=c_{1} e^{t}\binom{1}{2}+c_{2} e^{t}\left(t\binom{1}{2}+\binom{0}{-1}\right)$; The lines $y=2 x$ is the straight-line solution (unstable manifolds; The critical point $(0,0)$ is a source; Solutions curves try to spiral about the critical point, but the unstable manifold gets in the way.
14. $\lambda_{1}=-1, V_{1}=\binom{1}{2} ; \lambda_{2}=0, V_{1}=\binom{1}{1} ; X(t)=c_{1} e^{-t}\binom{1}{2}+c_{2}\binom{1}{1}$. All points on the line $y=x$ are critical points. All other solutions are lines with slope $m=2$ that move toward the line $y=x$.
